

Hidden hydropower potential in EU: micro-hydro technologies and hydro fleet modernization

Emanuele Quaranta, European Commission Joint Research Centre Emanuele.quaranta@ec.europa.eu

Hydropower debate: benefits vs impacts

Renewable energy, storage, flexibility
Water management

Tourism

NA I A I

Market development

Job opportunities

Fish injury
Sedimentation
Fragmentation
Hydropeaking
Flooding upstream
Hydro alterations

SustHydro (exploratory activity)

- Retrofitting of the existing hydropower fleet (considering different retrofitting strategies): <u>improvement of generation and flexibility without additional</u> <u>impacts.</u>
- Run-of-River hydro potential under different ecological scenarios (e-flow and distances): which is the best compromise between environmental safeguard and renewable energy target?
- Hydropower potential (retrofitting and new plants) from historic low head sites (e.g. water mills): <u>hydropower and safeguard of cultural heritage.</u>
- Hydrokinetic turbines in European rivers: <u>no-dam hydropower and remote</u> <u>electricity</u>
- Hydropower from WDNs and WWTPs: <u>retrofitting of existing hydraulic</u> <u>infrastructures.</u>
- Which are the novel materials?

Age of the hydropower fleet

Modernization practice	ΔE _{id} EU	ΔE _{id} Europe	Interpretation	Comment Quaranta et al., 2021a
Dam heightening – H- strategy	0.05%	0.22%	Increase of peak installed power	High investments, not always feasible; main benefit in increasing off- season generation by larger storage capacity.
Waterways and penstock, H-Q strategy	2.3%	3.2%	Increase of peak power of 3.6 GW and 8.2 GW, and annual generation of 8.4 TWh and 20 TWh	_
New equipment: weighted efficiency increase over wide range, η - strategy	5.0%	4.9%	Increase of peak power of 7.7 GW and 12 GW, and annual generation of 17.9 TWh and 30 TWh.	Fish friendly turbines may result in a lower efficiency (2% less) with respect to new standard turbines, thus halving the benefit in the worst case, but they are limited to low heads (<40 m) and their costs is lower [48].
Digitalization <i>Q-t-strategy</i>	1.0%/ 11%	1.0%/ 11%	Increase of efficiency of 1%, while annual generation can increase by 11%	Reduced costs and outage time not estimated.
Floating PV <i>Q</i> -strategy (evaporation reduction)	0.02%	0.05%	Increase of annual generation equivalent to 500 mini HPP with 100 kW of average power.	Stability of the floating structure, reservoirs covered by snow and ice and difficult for PV. PV on dam surface is a modern practice. The PV generation dominates additional hydro output due to evaporation reduction.
Floating PV: solar energy from PV		729 GW	Installed power of floating PV covering 14% of the reservoir surface [105]	This should not be considered an increase in hydro generation.
Reservoir interconnection, <i>Q-strategy</i>	4 TWh	28.6 TWh	Increase of energy storage.	Connecting reservoirs within 20 km, from Gimeno-Gutiérrez and Lacal Arántegui [67].
Virtual reservoir interconnection, <i>Q-t strategy</i>		140 TWh	Virtual Energy Storage Gain on 14 year period.	Coordinated operation of HPP within 3000 km, from [187].
Increase of peak discharge RoR, <i>Q-strategy</i>	4.4%	3.0%	Increase of annual generation of 15.8 TWh and 18.6 TWh.	Not quantified, but reasonably estimated
Increase of peak discharge SPP by new waterways, <i>Q- strategy</i>	0–100%	0–100%	Increase of peak power	Not quantified, site-specific
Increase of annual inflow, <i>Q-strategy</i>	-	-	Increase of annual generation	Not quantified, site-specific, may be negative in some regions due to climate change
Start and stop improvement	_	_	Increase of annual operating hours and lifespan extension	Not quantified
Overall indicator	8.4%	9.4%	-	(excluding the last four strategies, reservoir interconnection and coordinated operation, and energy from floating PV)

Environmentally Enhanced Turbines for Hydropower Plants: Current Technology and Future Perspective

	Alden	Francis	MGR
Hub diameter (m)	3.9	2.5	2.7
Rot. speed (rpm)	120	190	277
Runner blades	3	13	5
Guide vanes	14	20	24
Survival rate for a fish of 200 mm	98%	<50%	86%
Max. efficiency	93.6%	95%	95%

Emerging and Innovative Materials for Hydropower Engineering Applications

Quaranta and Davies., 2021

Hidden potential of micro hydropower

(in press, confidential) Quaranta et al., 2022.

Technology	Overall potential (TWh/y)	Description	Investment costs
Hydrokinetic turbines in rivers	0.2-1.2	Lower and upper limit of the economic potential, assuming C_p =0.3 and 25% of the river cross section exploited, 8,760 annual operating hours and FDC.	Average 5,000 €/kW, 0.04-0.1 €/kWh (single installation) and 0.3-0.8 €/kWh for a HT array
Water wheels in existing mills	1-2	Economic potential. At old mill sites. It may be higher because the database does not include all the EU mills. Plant efficiency assumed around 70%, depending on the wheel type, 8,760 annual operating hours. EU+UK	Average 4,800 €/kW including civil costs 7,000-20,000 € that may not be necessary at old mill sites, thus costs may be overestimated of 1.3-1.5 times in certain cases.
Hydro in pressurized water networks and WWTPs	<3.1	Technical potential. Plant efficiency 50%, 8,760 annual operating hours. EU+UK	Use of existing infrastructure replacing pressure reduction valves. Average 5,000 €/kW, 0.1-0.3 €/kWh for WWTPs
Hidden micro hydro not here quantified (from literature data)	7-8	Pressurized conduits for irrigation and industrial flows. Hydropower tailrace, existing barriers (EU+UK)	As above

Retrofitting the hydropower industrial heritage: vertical axis water mills

Retrofitting of hydropower industrial heritage: water lifting devices (norias)

References

Heider, K., Quaranta, E., Avilés, J. M. G., Lopez, J. M. R., Balbo, A. L., & Scheffran, J. (2022). Reinventing the wheel–The preservation and potential of traditional water wheels in the terraced irrigated landscapes of the Ricote Valley, southeast Spain. *Agricultural Water Management*, 259, 107240.

Quaranta, E., Pérez-Díaz, J. I., Romero-Gomez, P., & Pistocchi, A. (2021b). Environmentally enhanced turbines for hydropower plants: current technology and future perspective. *Frontiers in Energy Research*, 592.

Quaranta, E. & Davies, P. (2021). Emerging and innovative materials for hydropower engineering applications: turbines, bearings, sealing, dams and waterways, and ocean power. *Engineering*.

Quaranta, E., Pujol, T., Grano, M. (2021c). The repowering of vertical axis water mills preserving their cultural heritage: techno-economic analysis with water wheels and Turgo turbines, *Cultural Heritage Management and Sustainable Development*.

Quaranta, E., Aggidis, G., Boes, R.M., ..., Schleiss, A., Vagnoni, E., Wirth, M., Pistocchi, A. (2021a). Assessing the energy potential of retrofitting the European hydropower fleet. *Energy Conversion and Management*, 246, 114655

Quaranta, E., Bódis, K., Kasiulis, E., McNabola, A., Pistocchi, A. (2022). Is there a residual potential for small and hidden micro hydropower in Europe? A 1 screening-level regional assessment. *Water Resources Management, in press.*

Thank you

© European Union 2022

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

