

ATLE HARBY

SINTEF

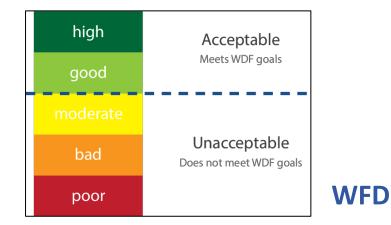
Atle Harby is a senior research scientist at SINTEF Energy Research in Norway. He has more than 25 years of experience in research and development with emphasis on environmental impacts of hydropower and the role of hydropower in energy systems. He is coordinating IEA Hydro Task "Valuing hydropower services", works part-time for the World Bank and is coordinating the recently funded EU research project "ReHydro" on Demonstration of Sustainable Hydropower Refurbishment.

Funded by the European Union

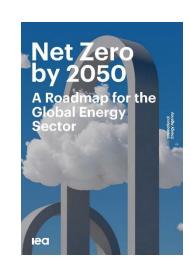
www.etip-hydropower.eu

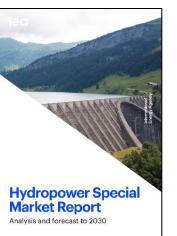

Upgrading of hydropower in Europe to increase flexibility and decrease biodiversity impact

Atle Harby, SINTEF Energy Research


Hydropower Day, Brussels, 16 April 2024

What is sustainable hydropower?





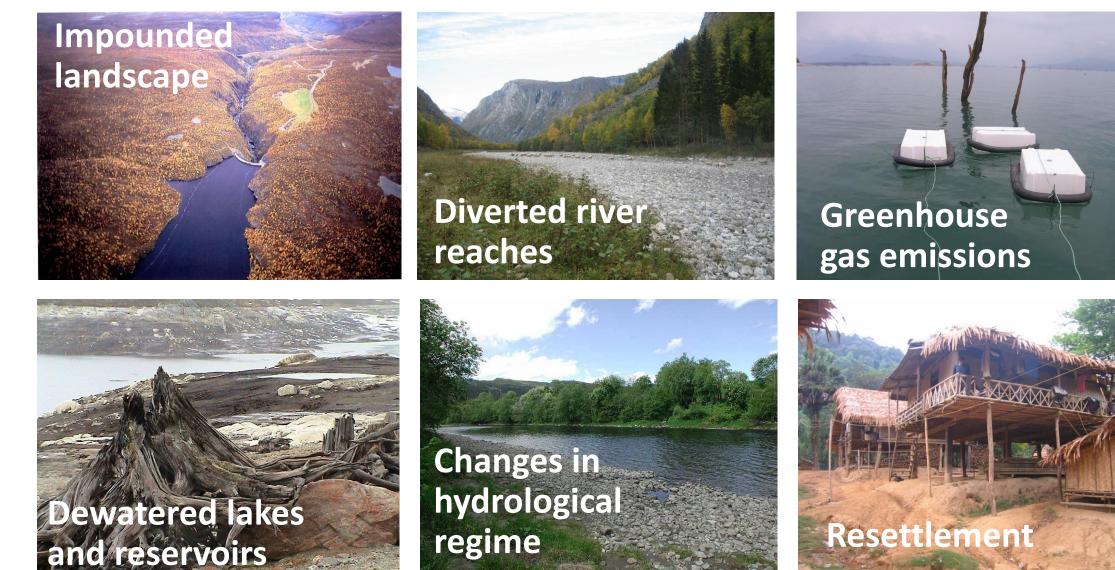
- 1. Social
- 2. Economical
- 3. Environmental

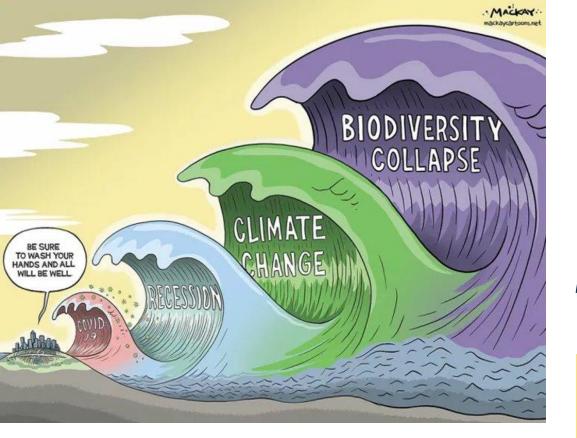
We have the tools – but do we apply them?

What is sustainable hydropower?

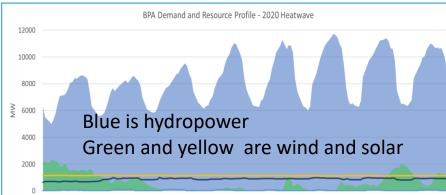
- Sustainable hydropower leads to:
 - Energy for all
 - Clean water and sanitation
 - Zero hunger
 - Economic growth
 - Sustainable communities
 - Life on land (including freshwater)
- What is sustainable hydropower? It's the wrong question to ask!

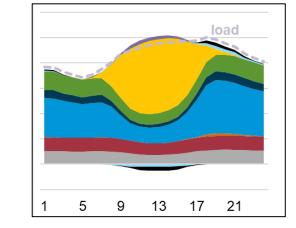
- Sustainable hydropower must not be seen isolated from the society
- Good practice hydropower
 - Adapted to local challenges and needs
 - Meeting global requirements


Hydropower that provides energy, water management for all users and interests and contributes to welfare

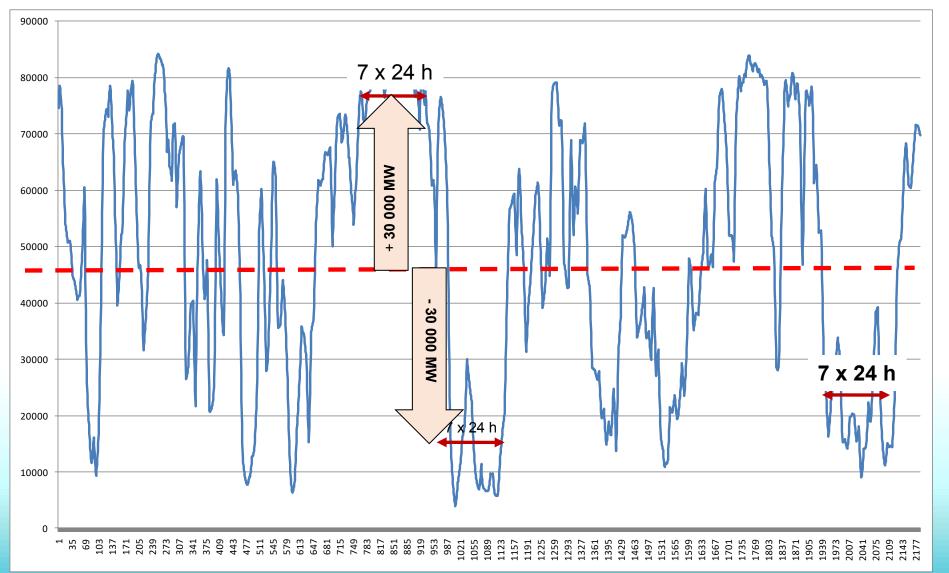


Environmental and social impacts from hydropower


Requires hydropower companies to declare their impact and dependency on nature and climate


Dunkelflaute

- periods with hardly no wind, nor solar power



Surplus periods - how to use excess energy and avoid curtailing generation? () SINTEF

Simulated wind production in the North Sea area in 2030

One week balancing = 30 000 MW in 168h = 5 000 GWh energy

= 1 000 typical PSH

= 38 700 HornsdalePower Reserve(Elon Musk batteryproject in Australia)

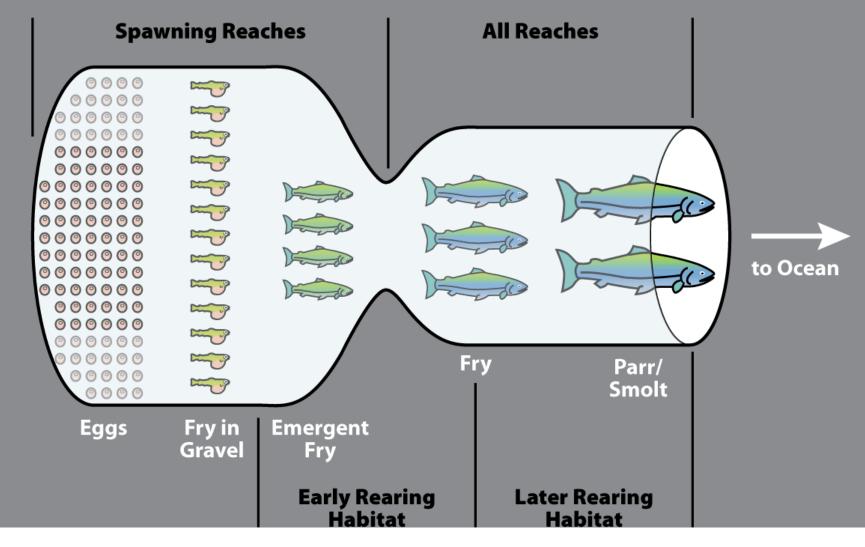
from IEA TCP Hydropower

Timescales of power system flexibility

Flexibility type	Short-term			Medium term	Long-term	
Time scale	Sub- seconds to seconds	Seconds to minutes	Minutes to hours	Hours to days	Days to months	Months to years
lssue	Ensure system stability	Short term frequency control	More fluctuations in the supply / demand balance	Determining operation schedule in hour- and day-ahead	Longer periods of VRE surplus or deficit	Seasonal and inter-annual availability of VRE
Relevance for system operation and planning	Dynamic stability: inertia response, voltage and frequency	Primary and secondary frequency response	Balancing real time market (power)	Day ahead and intraday balancing of supply and demand (energy)	Scheduling adequacy (energy over longer durations)	Hydro-thermal coordination, adequacy, power system planning (energy over very long durations)

Timescales of power system flexibility

Flexibilit type	У	Short-term		Medium term	Long-term	
Time sca	Sub- le seconds to seconds	Seconds to minutes	Minutes to hours	Hours to days	Days to months	Months to years
24V LITHI	SOAH DEEP CYCLE UM ION BATTERY	Composite Rim	Magnetic Bearing Vacuum Chamber	Determining operation schedule in hour- and day-ahead	Longer periods of VRE surplus or deficit	Seasonal and inter-annual availability of VRE
SMA CONTRACTOR	RT GRID	Motor Source Beaco	Shaft In Power, LLC	Day ahead and intraday balancing of supply and demand (energy)	Scheduling adequacy (energy over longer durations)	Hydro-thermal coordination, adequacy, power system planning (energy over very long durations)


Timescales of power system flexibility

Flexibility type	Short-term			Medium term	Long-term	
Time scale	Sub- seconds to seconds	Seconds to minutes	Minutes to hours	Hours to days	Days to months	Months to years
		* 1		Determining operation schedule in hour- and day-ahead	Longer periods of VRE surplus or deficit	Seasonal and inter-annual availability of VRE
				Day ahead and intraday balancing of supply and demand (energy)	Scheduling adequacy (energy over longer durations)	Hydro-thermal coordination, adequacy, power system planning (energy over very long durations)

HABITAT BOTTLENECK

Mitigation measures – design solutions

Environmental flow release

Two-way migration solutions

Stable temperature and ice cover

Introduce "a river in the river" when water is withdrawn

Improving habitats

"Water bank"

The technology is there – environmental design

- Demonstration of sustainable hydropower refubishment – 5 demonstration sites
- 22 partners 7 European countries
- Academic partners, hydropower companies, manufacturing inustry, service-providing companies
- May 2024 April 2028
 - Improve flexibility
 - Digital solutions
 - Fit for market
 - Environmental sustainability
 - Non-energy services to the society
 - Make European hydropower industry ready for export

Thank you for your attention!

www.sintef.no www.hydrocen.no atle.harby@sintef.no